Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Jens Hartung, ${ }^{\text {a* }}$ Kristina Daniel, ${ }^{\text {a }}$
Ingrid Svoboda ${ }^{\text {b }}$ and Hartmut Fuess ${ }^{\text {b }}$
${ }^{\text {a }}$ Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663
Kaiserslautern, Germany, and
${ }^{\mathbf{b}}$ Strukturforschung, FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany

Correspondence e-mail:
hartung@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.041$
$w R$ factor $=0.088$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were
automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-(4-Methoxyphenyl)-4-methylthiazole-2(3H)-thione

The molecules of the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NOS}_{2}$, form hydrogen-bonded dimers in the solid state. The amide H atom serves as hydrogen-bond donor and the thiocarbonyl S atom of a neighbouring molecule serves as acceptor. The p methoxyphenyl substituent is tilted by $7.3(5)^{\circ}$ from the thiazole-2(3H)-thione plane.

Comment

5-(p-Methoxyphenyl)-4-methylthiazole-2(3H)-thione, (I), is formed as a minor product in the photochemical reaction between $\quad N$-hydroxy-5-(p-methoxyphenyl)-4-methylthiazole-2(3H)-thione and $\mathrm{Bu}_{3} \mathrm{SnH}$ (Hartung, Gottwald et al., 2005). The identity of compound (I) was established by X-ray diffraction analysis.

(I)

The methoxy group is situated in the plane of the aryl substituent, presumably for reasons of maximum overlap between one of the non-bonding electron pairs of oxygen and the aromatic π-system $\left[\mathrm{C} 11-\mathrm{C} 10-\mathrm{O} 1-\mathrm{C} 13=5.0(5)^{\circ}\right]$. The p-methoxyphenyl substituent is tilted by $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8=$ $7.3(5)^{\circ}$ from the thiazole-2(3H)-thione plane defined by atoms S1, C2, N3, C4 and C5 [deviation of 0.002 (7) \AA for atom C2 and 0.009 (7) \AA for N3] (Fig. 1). This value is significantly smaller than the corresponding dihedral angle in both $\quad N$-benzoyloxy-5-(p-methoxyphenyl)-4-methylthiazole-2(3H)-thione [51.6 (3) ${ }^{\circ}$; Hartung, Altermann et al., 2005 and N -hydroxy-5-(p-methoxyphenyl)-4-methylthiazole-2(3H)thione [51.8 (4) ${ }^{\circ}$; Hartung, Shpehar et al., 2005]. The C2-S2 bond length in (I) $[1.679$ (3) \AA] is comparable to the $\mathrm{C}=\mathrm{S}$ distance in, for example, N-hydroxy-5-(p-methoxyphenyl)-4-methylthiazole-2(3H)-thione $\quad[1.676(3) \AA], \quad N$-isopro-poxy-5-(p-methoxyphenyl)-4-methylthiazole-2(3H)-thione [1.659 (2) Å] and N-pentoxy-5-(p-methoxyphenyl)-4-methyl-thiazole-2(3H)-thione [1.671 (7) A; Hartung, Gottwald et al., 2005. The bond lengths within the heterocyclic core increase along the series $\mathrm{C} 2-\mathrm{N} 3=1.340$ (3) $\AA<\mathrm{C} 4-\mathrm{C} 5=1.347$ (4) \AA $<\mathrm{C} 4-\mathrm{N} 3=1.390$ (3) $\AA<\mathrm{C} 2-\mathrm{S} 2=1.679$ (3) $\AA<\mathrm{C} 2-\mathrm{S} 1=$ 1.720 (3) $\AA<\mathrm{C} 5-\mathrm{S} 1=1.758$ (3) \AA. The endocyclic bond angles of the 1,3 -thiazolidine subunit (Table 1) are, within

Received 29 March 2005
Accepted 3 May 2005
Online 14 May 2005

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
experimental error, identical to the values reported for N -hydroxy-5-(p-methoxyphenyl)-4-methylthiazole-2(3H)thione (Hartung, S̆pehar et al., 2005). An intermolecular N$\mathrm{H} \cdots \mathrm{S}$ hydrogen bond links the molecules into hydrogenbonded dimers (Fig. 2), where the amide H atom serves as hydrogen-bond donor and the thiocarbonyl S atom of a neighbouring molecule serves as an acceptor (Table 2). This type of hydrogen bonding is usual for heterocyclic thioamides (Penfold, 1953; Reynolds et al., 1995; Nalini \& Desiraju, 1987; Polonski et al., 1999; Linden et al., 2001; Kunimoto et al., 2002; Zhong et al., 2003).

Experimental

A solution of N-hydroxy-5-(p-methoxyphenyl)-4-methylthiazole$2(3 H)$-thione ($96.0 \mathrm{mg}, 0.36 \mathrm{mmol}$) (Hartung et al., 2003) and $\mathrm{Bu}_{3} \mathrm{SnH}$ ($103.3 \mathrm{mg}, 0.36 \mathrm{mmol}$) in anhydrous $\mathrm{C}_{6} \mathrm{H}_{6}(5 \mathrm{ml})$ was photolyzed $(\lambda=$ 350 nm) for 10 min under $\mathrm{Ar}(293 \mathrm{~K})$. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/acetone $2: 1 \mathrm{v} / \mathrm{v}$) to afford 5-(p-methoxyphenyl)-4-methyl-2-(tributylstannylsulfanyl)thiazole ($129 \mathrm{mg}, 68 \%$) (Hartung, Gottwald et al., 2005) and 5-(p-methoxy-phenyl)-4-methylthiazole-2(3H)thione, (I) $\quad(20.5 \mathrm{mg}, \quad 24 \%)$. Compound (I) crystallizes from MeOH as pale yellow plates, which were suitable for X-ray diffraction. Analysis calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NOS}_{2}$: C 55.67 , H 4.67, N 5.90 , S 27.02%; found C 55.43 , H 4.51, N 5.75, S 26.13%. MS (EI, 70 eV), $m / z(\%)=237$ [$\left.M^{+},(100)\right]$, 222 (17), 178 (5), 163 (14). HR MS: calculated 237.0282, found 237.0282. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta_{H}=2.31(s, 3 \mathrm{H}), 3.84(s, 3 \mathrm{H})$, $6.94(\mathrm{Ar}-d, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.25(\mathrm{Ar}-d, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 63 \mathrm{MHz}\right) \delta_{C}=33.7,36.6,55.4,114.4,130.0,159.8,171.5 . \mathrm{UV} /$ Vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda(\log \varepsilon)=284 \mathrm{~nm}(4.23 \mathrm{sh})$.

Figure 2
Visualization of the hydrogen bonding (dashed lines) in the unit cell of (I), viewed along [100].

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NOS}_{2}$
$M_{r}=237.33$
Triclinic, $P \overline{1}$
$a=6.227$ (1) \AA
$b=8.360$ (1) \AA
$c=11.624$ (3) A
$\alpha=76.00(2)^{\circ}$
$\beta=78.40(2)^{\circ}$
$\gamma=75.05(2)^{\circ}$
$V=561.0(2) \AA^{3}$
$Z=2$

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
ω scans
Absorption correction: analytical
CrysAlis RED (Oxford Diffraction, 2002)
$T_{\text {min }}=0.801, T_{\text {max }}=0.974$

$$
D_{x}=1.405 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 1180
reflections
$\theta=2.7-22.9^{\circ}$
$\mu=0.45 \mathrm{~mm}^{-1}$
$T=299$ (2) K
Plate, pale yellow
$0.52 \times 0.28 \times 0.06 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.088$
$S=0.86$
2209 reflections
139 parameters

6413 measured reflections
2209 independent reflections
1140 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-7 \rightarrow 7$
$k=-8 \rightarrow 10$
$l=-14 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.031 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.023$
$\Delta \rho_{\max }=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C2-N3	$1.340(3)$	$\mathrm{C} 4-\mathrm{N} 3$	$1.390(3)$
C2-S2	$1.679(3)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.501(4)$
C2-S1	$1.720(3)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.468(4)$
C4-C5	$1.347(4)$	$\mathrm{C} 5-\mathrm{S} 1$	$1.758(3)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 1$	$107.9(2)$	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$117.6(3)$
C5-C4-N3	$112.3(3)$	$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 5$	$92.95(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1$	$109.3(2)$		
			$-0.3(2)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1$	$0.4(3)$	$\mathrm{N} 3-\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 5$	$-0.1(2)$
$\mathrm{S} 1-\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4$	$0.5(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{S} 1-\mathrm{C} 2$	
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2$	$-0.6(4)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{~S} 2^{\mathrm{i}}$	$0.89(3)$	$2.45(3)$	$3.333(3)$	$172(2)$

Symmetry code: (i) $-x, 2-y, 1-z$.
Atom H3 was located in a difference Fourier map. The atomic coordinates of H 3 were refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N} 3)$. All other H atoms were positioned geometrically and treated as riding atoms $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrysAlis CCD (Oxford Diffraction Limited, 2002); cell refinement: CrysAlis RED (Oxford Diffraction Limited, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON2003 (Spek, 2003) and ORTEP-3 (Farrugia, 1997, 2005); software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft (Graduiertenkolleg 690: Elektronendichte Theorie und Experiment).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (2005). ORTEP-3. University of Glasgow, Scotland.
Hartung, J., Altermann, S., Svoboda, I. \& Fuess, H. (2005). Acta Cryst. E61, o1738-o1740.
Hartung, J., Gottwald, T., Daniel, K., Svoboda, I. \& Fuess, H. (2005). In preparation.
Hartung, J., Gottwald, T. \& Špehar, K. (2003). Synlett, pp. 227-229.
Hartung, J., Spehar, K., Svoboda, I., Fuess, H., Arnone, M. \& Engels, B. (2005). Eur. J. Org. Chem. pp. 869-891.
Kunimoto, K.-K., Kitoh, S., Ichitani, M., Funaki, N., Kuwae, A. \& Hanai, K. (2002). Heterocycles, 57, 2011-2019.

Linden, A., Ghorbani-Salman, F., Breitenmoser, R. A. \& Heimgartner, H. (2001). Acta Cryst. C57, 634-637.

Nalini, V. \& Desiraju, G. R. (1987). Tetrahedron, 43, 1313-1320.
Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Versions 1.170.14. Oxford Diffraction, Oxford, England.

Penfold, B. R. (1953). Acta Cryst. 6, 707-713.
Polonski, T., Milewska, M. J., Konitz, A. \& Gdaniec, M. (1999). Tetrahedron Asymmetry, 10, 2591-2604.
Reynolds, J. G., Sendlinger, S. C., Murray, A. M., Huffman, J. C. \& Christou, G. (1995). Inorg. Chem. 34, 5745-5752.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhong, H.-P., Long, L.-S., Huang, R.-B. \& Zheng, L.-S. (2003). Acta Cryst. E59, o1599-o1600.

